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Abstract: We study the thermodynamic consistency of Rastall gravity in a spatially flat Friedmann—
Robertson-Walker (FRW) universe. Beginning from the non-conservation ansatz originally
proposed by Rastall, we derive the modified field and continuity equations and obtain expressions
for horizon radii. Using the horizon temperature and a phenomenological form for the horizon
entropy in Rastall gravity, we derive the generalized second law of thermodynamics (GSLT) and
the thermodynamic equilibrium (TE) condition for both the apparent and event horizons.
Numerical illustrations (ACDM background) demonstrate parameter ranges where GSLT and TE
hold.
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1. Introduction

The idea that gravitation and thermodynamics are deeply interconnected has been a
guiding principle in modern cosmology and gravitational physics. From Jacobson’s (1995)
derivation of Einstein’s field equations using the Clausius relation to Padmanabhan’s
(2010) holographic and emergent-gravity proposals, there hasbeen a growing belief that
the Einstein equations themselves encode thermodynamic behavior of spacetime. Within
this broader context, Rastall gravity, proposed by P. Rastall (1972), represents an
intriguing phenomenological modification of General Relativity (GR), where the usual
conservation law of the energy-momentum tensor is relaxed. Instead of enforcing the
covariant conservation law

VT =0

Rastall postulated that in curved spacetime the divergence of the stress—energy tensor could be

nonzero and proportionalto the gradient of the Ricci scalar, i.e.,

V,T* = V'R,
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where 1 is a constant parameter characterizing the strength of the non-minimal coupling between matter and geometry. This
modification implies that the ordinary energy-momentum conservationlaw in GR may break down in the presence of curvature,
leading to novel gravitational and cosmological effects. Rastall’s original motivation was to capture possible particle creation,

annihilation, or non-minimal interactions in a phenomenological manner atlarge scales (Rastall, 1972).

Since the proposal of this model, a vast literature has developed exploring its implications in various physical contexts.
Cosmologically, Rastall gravity modifies the effective Friedmann equations and can lead to accelerated expansion without invo king
exotic dark energy fields. For instance, Moradpour et al. (2017) and Batista et al. (2012) examined the evolution of the universe in the
Rastall framework and showed thatit can reproduce late-time acceleration consistent with current cosmological observations. Fabris
et al. (2012) and Al-Rawaf & Taha (1996) further investigated Rastall cosmology and concluded that it can mimic ACDM dynamic
under specific choices of the coupling constant A. These studies reinforced the idea that Rastall’s modification may represent an

effective phenomenological model for dark energy and cosmicacceleration.

The theoretical interpretation of Rastall gravity remains the subject of active debate. Some authors, such as Visser (2018), have argued
that Rastall gravity may not introduce new dynamics but rather reinterprets GR with a redefined energy -momentum tensor,
implying that the model is dynamically equivalent to GR in most cases. Others, including Darabi et al. (2018) and Moradpour & Salako
(2016), contend that Rastall gravity genuinely departs from GR due to the modified energy—-momentum exchange between geometry
and matter, which can have thermodynamicimplications distinct from standard relativity. This dichotomy —whether Rastall gravity

is fundamentally new or merely a reformulation —remains a key issue inits interpretation.

Parallel to its cosmological exploration, thermodynamicinvestigations in Rastall gravity have gained increasing attention. Motivated
by the profound thermodynamic interpretation of field equations, researchers have examined whether the first law of
thermodynamics, the Bekenstein-Hawking entropy—-area relation, and the Generalized Second Law of Thermodynamics (GSLT)
continue to hold in the Rastall framework. Bambacet al. (2017) systematically analyzed the validity of the first and generalized second
laws for various entropy—area corrections —such as logarithmic, power-law, and Rényi entropies —at the apparent horizon in Rastall
gravity. Their results indicated that under appropriate parameter choices, the thermodynamiclaws remain valid, though they m ay

require modified entropy-arearelations.

Similarly, Cruz et al. (2019) reexamined the thermodynamic consistency of Rastall gravity in a flat Friedmann—-Robertson-Walker

(FRW) spacetime, explicitly deriving conditions for the validity of the first and second laws of thermodynamics. They emphasi zed
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that consistency depends crucially on how entropy is defined in terms of the effective gravitational coupling and whether one
considers the apparent or event horizon. These analyses highlight the subtleties of applying thermodynamic principles to modi fied-

gravity frameworks.

Further, Moradpour et al. (2018) and Lobo et al. (2018) studied the interplay between horizon thermodynamics and field equationsin
Rastall gravity, arguing that gravitational field equations can be rewritten in a thermodynamic form similar to dE = TdS + WdV,
implying an emergent thermodynamic character. More recent works, such as Heydarzade & Darabi (2017) and Hadi et al. (2020),
extended the study to black hole thermodynamics, examiningentropy production, horizon stability, and quantum corrections within

the Rastall framework.

Recent reviews (Capozziello et al., 2020; Sharma & Shukla, 2021; Moraes et al., 2022) have emphasized that Rastall-type models, when
analyzed from a thermodynamic perspective, can yield deeper insights into entropy evolution, equilibrium conditions, and effective
energy-momentum exchange mechanisms that drive cosmic acceleration. These works reveal that thermodynamic considerations
not only test the physical consistency of Rastall gravity but also provide potential constraints on the coupling parameter A through

entropy evolution laws.

Given the central role of horizon thermodynamicsin testing gravitational theories, this paper undertakes a detailed analysis of the
Generalized Second Law of Thermodynamics (GSLT) and Thermodynamic Equilibrium (TE) in the framework of Rastall gravity. We
focus on both the apparent and event horizons, using a spatially flat FRW universe. Our goal is to examine whether entropy in creases

2
monotonically (% > 0) and whether the system approaches equilibrium (% < 0) throughout the cosmic evolution. Using

realistic cosmological parameters and a phenomenological parameterization for the Rastall coupling A, we perform a comparative

analysis between the apparent and event horizon cases.

The paper is organized as follows: Section 2 outlines the basic equations of Rastall gravity, including the field equations, modified
Friedmann equations, and continuity relations. Section 3 presents the thermodynamicanalysis, where the first and second laws are
applied to both horizons with explicit derivations of the GSLT and TE conditions. Section 4 provides a graphical analysis to visualize
the validity of the thermodynamic conditions throughout cosmic evolution. Finally, Section 5 concludes with a discussion of the

implications and possible directions for future research on thermodynamic consistency in modified gravity theories.
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2.Basic equations of Rastall gravity

Rastall gravity modifies the traditional framework of General Relativity (GR) by relaxing the condition of local conservation of the

energy-momentum tensor. In standard GR, the Einstein field equations are derived from the Einstein-Hilbert action

R
S=[(—+ Ly /~gd*x,
J Ggmg T £m)Y—g %
where Ris the Ricci scalar, Gis the gravitational constant, gis the determinant of the metrictensor g v and L, represents the matter

Lagrangian density. The variation of thisaction with respect to g, yields the Einstein field equations,

Gy =81G Ty,

where G, =R, — %ngis the Einstein tensor, and the covariant conservation law VuT“" = 0 follows automatically from the

W

contracted Bianchi identity V,G =0,

However, Rastall (1972) proposed that the usual conservation of the stress—energy tensor may not hold in curved spacetime,
especially when quantum effects or particle creation are present. Instead, the divergence of TH"is assumed to be proportional to the

gradient of the Ricci scalar:
7,T* = AV'R,

where lis the Rastall coupling parameter, quantifying the deviation from GR. For A = 0, the usual conservation law is recovered,

and Rastall gravity reduces to standard General Relativity.

This modified conservation condition implies that energy and momentum are not separately conserved in the traditional sense but
are exchanged with the geometry of spacetime. The above modification can be incorporated directly into the field equations. T aking

the divergence of the Einstein tensor and using the Bianchi identity, Rastall proposed that the field equations must satisfy:
1
RMV — EgWR = 87IG(TW — Agm,R)

Contracting both sides with g*”, we obtain the trace equation

R — 2R = 8nG(T — 4AR),

which simplifies to

R(1 — 4nG2) = 8nGT,
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and hence,

_ 8mGT
T 1—4nGA

Substituting thisback into the original field equation gives the modified Rastall field equation:

AT

1
Ryw=59,wR =8nG (T — mguv]'

This clearly shows that the curvature of spacetime not only depends on the local energy-momentum tensor but also on its trace T,

modified by the coupling parameter 2. When A = 0, one recovers the usual Einstein equations.

For cosmological applications, we consider a homogeneous and isotropic spacetime described by the Friedmann-Lemaitre—

Robertson-Walker (FLRW) metric,

dr?

2 _ _ .2 2
ds*“=—dt" + a(t) (1—kr2

+r2d0?),

where a(t)is the cosmic scale factor and kis the spatial curvature constant (k = 0,+1,—1 for flat, closed, and open universes

respectively). The matter content of the universe ismodeled as a perfect fluid with energy-momentum tensor

Ty = (p +P)uyty + PGy

where pand pare the energy density and pressure of the cosmicfluid, respectively, and u,,is the four-velocity satisfying u,u# = —1.

Substituting these into the modified field equations for a flat universe (k = 0), we obtain the modified Friedmann equations in Rastall

gravity. The temporal (00) and spatial (ii) components yield, respectively,

3H? = 8mG(p — 32p),

2H + 3H?= —81G(p — Ap),
whereH = gis the Hubble parameter, and the effective gravitational coupling is defined as,

oo G
1= anGA’

17



JOI2024, Vol 4, Issue 1

These equations reduce to the standard Friedmann equations of GR in the limit A — 0. The term involving Aintroduces effective
corrections that can mimic dark energy or particle production effects, allowing accelerated cosmic expansion without invoking an

explicit cosmological constant (Moradpour & Faraoni, 2017; Fabris et al., 2012).

The continuity equation is modified in Rastall gravity due to the non-conservation of 7,,,,. Using V,T#” = V'R and assuming a perfect

fluid, we obtain

p+3H(p+p) =3A(H + 2H?).

This equation indicates an exchange of energy between matter and geometry, leading to non-trivial evolution of peven in the absence
of pressureless matter. The additional term on the right-hand side represents the influence of the Rastall parameter on the dynamic
of the universe. Itbecomes evident that for 4 > 0, effective energy transfer from geometry to matter occurs, while A < 0Oimplies energy

transfer from matter to geometry.
An alternative and more compact way to express the cosmological equations is by introducing the effective energy density and
pressure:

1-31 1-2
Peff=mplpeff=mp-

Thus, the modified Friedmann equations take the form

3H?=8nGpyy2H + 3H? = —81G Py

These relations make the Rastall framework formally equivalent to GR with a redefined matter sector, but its thermodynamic

implications and horizon entropy evolution differ significantly (Batista et al., 2012; Heydarzade & Darabi, 2017).

In summary, Rastall gravity generalizes the conservation law, introducing an effective coupling between curvature and matter. This
modification alters the Friedmann and continuity equations, thereby influencing cosmic dynamics and thermodynamics. The next
section will explore the thermodynamic laws in this framework, particularly the Generalized Second Law of Thermodynamics
(GSLT) and Thermodynamic Equilibrium (TE) at both the apparent and event horizons, demonstrating how the Rastall parameter

Aaffects the validity of these fundamental thermodynamic principles.
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3. Thermodynamic Analysis in Rastall Gravity

The connection between gravity and thermodynamics has become a central theme in modern theoretical cosmology. Following the
pioneering works of Bekenstein (1973) and Hawking (1975), black hole thermodynamics established that the area of the event horizon
plays the role of entropy and the surface gravity corresponds to temperature. Jacobson (1995) later demonstrated that Einstein’s field
equations can be derived from the Clausius relation §Q = TdS, connecting horizon thermodynamics and spacetime dynamics. In this
sense, gravity is interpreted as an emergent thermodynamic phenomenon.
In Rastall gravity, because the energy—momentum tensor is not conserved in the conventional sense, it becomes essential to re-

examine the thermodynamiclaws, particularly the Generalized Second Law of Thermodynamics (GSLT) and Thermodynamic

Equilibrium (TE), under the modified field equations.
We beginby considering a homogeneous and isotropicflat Friedmann-Robertson-Walker (FRW) universe with the line element
ds? = —dt?+ a?(t)(dr?+ r?d0?)
The apparent horizon for this metricis defined by the condition
h*Yd,RI,R =0

where R = a(t)ris the areal radius. This leads to the apparent horizon radius

Ryt

H

Similarly, the event horizon is defined as the boundary beyond which signals cannot reach the observer, given by

D dt’
E— a( ) a(t')
t
The surface gravity associated with a horizonis givenby

1 Ry,
K=——(1-
R," 2HR,

)

where R represents the horizonradius (apparent or event). The corresponding Hawking temperature is

l x| 1 Ry,
a 2HR,,

)
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For the apparent horizonin a flat universe, R, = 1/H, we find

. H
Ry=-72
so that
T, _ 1+ i
a=5-(1+>m)

This relation ensures that the apparent horizon possesses a well-defined temperature linked to the cosmicexpansion rate.

The entropy of the horizon in Rastall gravity differs from the standard Bekenstein-Hawking form. Due to the modified coupling
between matter and geometry, the entropy—area relation must be corrected. According to Bamba et al. (2010) and Moradpour &

Faraoni (2017), the effective gravitational coupling in Rastall gravity is

G
1—4nGA

G =

Hence, the horizon entropy becomes

A wR;
M 4Gy G(1 —4mGA)

S

This shows that the parameter Aeffectively rescales the entropy, altering the thermodynamicbehavior of the universe.
To test the Generalized Second Law of Thermodynamics (GSLT), we consider the total entropy of the universe within the horizon,
Stotal = Sp +Sm
where Syis the horizon entropy and S,,,denotes the entropy of the matter—energy content inside the horizon. The GSLT requires that
Sl = Sn + S =0
From the Gibbs equation for the matter inside the horizon,
TndSy, =dE, +pdV
where E,, = pVand V = %nR sisthe enclosed volume. Differentiating and using the modified continuity e quation in Rastall gravity,

p+3H(p+p) =3A(H + 2H?)
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we obtain the matter entropy rate as

4mR? .
7 P+ P)(Ry—HRy)
m

S =

Assuming local thermal equilibrium between the horizon and matter (T, = Tj), the total entropy variation becomes

. 2nR, .  4mR? .
Stotal = 7 Rn +—— (0 + P)(Rp — HRp)
eff h

For the apparent horizon, substituting R, = 1/Hand R, = —H/H? we find

5 (A) _ 2T ;
total GeffH

iy + =% H— H?
() 4o + ) = H)

The sign of St((ﬁgldetermines the validity of the GSLT. For a realisticexpanding universe (H < 0)and p + p > 0, the first term is

positive, and under suitable conditions, the second term also contributes positively, ensuring that S, 5021 > 0.Hence, the GSLT is

satisfied at the apparent horizon.
At the eventhorizon, using Rz = a f:o dt'/a(t") and R = HRy — 1, the entropy variation s

(EQ::ZHRERE4_4ER§
ot G et Tg

(p+ p)(Rg— HRp)

After simplification,

4mR2
(p+p)

. 2nR
B = —EHR; - 1)~
ff Ty

total — G
el

The GSLT holds (St(fg11 > 0) if the combination of expansion rate and horizon size satisfies HR; = 1, which typically occurs in an
accelerating universe. Thus, both horizons can obey GSLT in Rastall gravity, though the allowed range of the parameter Aslightly

shifts these conditions.
Next, we analyze Thermodynamic Equilibrium (TE), which demands that the total entropy reaches a maximum, implying
Stotal < 0

For the apparent horizon, differentiating S t((ﬁgland substituting the field equations, one obtains an expression involving higher

derivativesof H:

(4) H 4H?
StotaloC _m-i- H§
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The TE condition (§ t((’:;l < 0) thus requires that the cosmic deceleration decreases slowly enough that | H |dominates over H?/H. This
is physically consistent during the late-time accelerating epoch where Hevolves smoothly. The parameter Amodifies these derivatives,

effectively changing the relaxation rate toward equilibrium.
Similarly, for the event horizon,

§® o« (HRz— 1)(H— H?) + RGH

:(E)

Numerical evaluations show that in Rastall gravity, TE (8.}, < 0) can hold for small positive 4, corresponding to scenarios where

energy flows from geometry to matter, stabilizing the horizon thermodynamics.

Thus, by computing the firstand second derivatives of the total entropy with respect to redshift, we can test GSLT (dS;..;/dz > 0)
and TE (d?%S,,./dz? < 0) throughout cosmic evolution. The numerical results, shown in the subsequent section, confirm that both

conditions are satisfied for realistic cosmological parameters and moderate values of A, validating the thermodynamic consistency

of Rastall gravity.
4. Graphical analysis

To visualize the thermodynamic behavior of the universe in Rastall gravity, we plot the first and second derivatives of the total

. . . . . _ . . . . dstotal
entropy with respect to redshift, using a representative Rastall coupling 4 = 0.0,0.01,0.02. The diagnostics used are: GSLT: —>=>

azs total

0(equivalent to Sy > 0 in time),TE: —3

< 0(entropy concave down). The figure contains four panels (top-left to bottom-right):

. ds . d3s . ds . dZs .
apparent-horizon %tal, apparent-horizon ﬁm', event-horizon %ta', and event-horizon #tal. In all panels the three different

colours line shows the validity of the laws (GSLT and TE).

Stoto
dz?

dSiota Apparent horizon: el

Apparent horizon;

dz

30 — A=00
A=0.01

— A=0.02

=60
10
—80 — A=00
° A=001
0 —100 — A=0.02
0005 10 1520 25 30 00 05 10 15 20 25 30
< z
i d?5;
Event horizon; Event horizon: 22
=0 — r=00
A=0.01

125 — 1=0.02

10.0

0.0 0.5 10 15 2.0 2.5 3.0
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Figure description and interpretation:

@)

(ii)

(iii)

(iv)

AStotal

Apparent horizon — —2

The plotted curve is positive for all 0 < z < 3, rising from zero at z = 0and approaching a constant at high redshift. A

positive %‘(amd therefore positive Syq,)) indicates that the generalized second law is satisfied on the apparent horizon
across the entire plotted history. Physically this implies that the horizon entropy growth (including matter entropy via Gibbs

relation) outpaces any local decreases, consistent with a net non-decreasing total entropy.

azs total

Apparent horizon — —%

The second derivative is negative for all z, indicating that Si(2)is concave down; in physical terms this is the
thermodynamic-equilibrium (TE) criterion: the system approaches a (local) entropy maximum as the universe evolves, and

fluctuations decay. The negative curvature here suggests a smooth relaxation toward equilibrium without overshoot.

dStotal

Event horizon —
dz

The event-horizon entropy derivative is positive throughout the plotted range, but with smaller magnitude and a decaying
profile. This positivity signals that, for the representative parameter choice, the GSLT also holds on the event horizon
(though the event horizon is a global quantity and its thermodynamic interpretation is more subtle than the apparent

horizon).

dzstotal

Event horizon — Ta

The second derivative is negative everywhere, indicating TE on the event horizon as well. The magnitude is smaller

compared to the apparent-horizon TE, reflecting the event horizon’s different causal and thermodynamic properties.

5. Conclusion and future work

In this work, we examined the thermodynamicbehavior of Rastall gravity withinaflat FRW universe by analyzing the Gener alized

Second Law of Thermodynamics (GSLT) and Thermodynamic Equilibrium (TE) on both apparent and event horizons. The modified

field equations arising from the non-conservationlaw V#T’“’ = AVYRwere used to derive expressions for entropy, temperature, and

total entropy evolution.
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Our analysis shows that the GSLT holds (S, > 0) throughout cosmicevolution, confirming that total entropy always increases. The
second derivative S, < 0 indicates that thermodynamic equilibrium is achieved at late times. The results also reveal that the
apparent horizon satisfies thermodynamiclaws more effectively than the event horizon. The Rastall coupling parameter A influences

the rate of entropy production, where positive values of Zenhance thermodynamicstability.

Future work may include extending this analysis to non-flat or anisotropic models, considering entropy corrections (Barrow, Tsal lis,
or Rényi types), and testing the model using observational constraints on A. Such studies could provide deeper insight into the

thermodynamicnature and cosmological implications of Rastall gravity.
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