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Abstract: We study the thermodynamic consistency of Rastall gravity in a spatially flat Friedmann–

Robertson–Walker (FRW) universe. Beginning from the non-conservation ansatz originally 

proposed by Rastall, we derive the modified field and continuity equations and obtain expressions 

for horizon radii. Using the horizon temperature and a phenomenological form for the horizon 

entropy in Rastall gravity, we derive the generalized second law of thermodynamics (GSLT) and 

the thermodynamic equilibrium (TE) condition for both the apparent and event horizons. 

Numerical illustrations (ΛCDM background) demonstrate parameter ranges where GSLT and TE 

hold. 
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1. Introduction  

The idea that gravitation and thermodynamics are deeply interconnected has been a 

guiding principle in modern cosmology and gravitational physics. From Jacobson’s (1995) 

derivation of Einstein’s field equations using the Clausius relation to Padmanabhan’s 

(2010) holographic and emergent-gravity proposals, there has been a growing belief that 

the Einstein equations themselves encode thermodynamic behavior of spacetime. Within 

this broader context, Rastall gravity, proposed by P. Rastall (1972), represents an  

intriguing phenomenological modification of General Relativity (GR), where the usual 

conservation law of the energy–momentum tensor is relaxed. Instead of enforcing the 

covariant conservation law 

∇𝜇𝑇𝜇𝜈 = 0 

Rastall postulated that in curved spacetime the divergence of the stress–energy tensor could be 

nonzero and proportional to the gradient of the Ricci scalar, i.e., 

∇𝜇𝑇𝜇𝜈 = 𝜆∇𝜈𝑅, 
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where 𝜆 is a constant parameter characterizing the strength of the non-minimal coupling between matter and geometry. This 

modification implies that the ordinary energy–momentum conservation law in GR may break down in the presence of curvature, 

leading to novel gravitational and cosmological effects. Rastall’s original mo tivation was to capture possible particle creation, 

annihilation, or non-minimal interactions in a phenomenological manner at large scales (Rastall, 1972). 

Since the proposal of this model, a vast literature has developed exploring its implications in vari ous physical contexts. 

Cosmologically, Rastall gravity modifies the effective Friedmann equations and can lead to accelerated expansion without invo king 

exotic dark energy fields. For instance, Moradpour et al. (2017) and Batista et al. (2012) examined the evolution of the universe in the 

Rastall framework and showed that it can reproduce late-time acceleration consistent with current cosmological observations. Fabris 

et al. (2012) and Al-Rawaf & Taha (1996) further investigated Rastall cosmology and concluded that it can mimic ΛCDM dynamics 

under specific choices of the coupling constant λ. These studies reinforced the idea that Rastall’s modification may represen t an 

effective phenomenological model for dark energy and cosmic acceleration. 

The theoretical interpretation of Rastall gravity remains the subject of active debate. Some authors, such as Visser (2018), have argued 

that Rastall gravity may not introduce new dynamics but rather reinterprets GR with a redefined energy –momentum tensor, 

implying that the model is dynamically equivalent to GR in most cases. Others, including Darabi et al. (2018) and Moradpour & Salako 

(2016), contend that Rastall gravity genuinely departs from GR due to the modified energy–momentum exchange between geometry 

and matter, which can have thermodynamic implications distinct from standard relativity. This dichotomy—whether Rastall gravity 

is fundamentally new or merely a reformulation—remains a key issue in its interpretation. 

Parallel to its cosmological exploration, thermodynamic investigations in Rastall gravity have gained increasing attention. Motivated 

by the profound thermodynamic interpretation of field equations, researchers have examined whether the first law of 

thermodynamics, the Bekenstein–Hawking entropy–area relation, and the Generalized Second Law of Thermodynamics (GSLT) 

continue to hold in the Rastall framework. Bamba et al. (2017) systematically analyzed the validity of the first and generalized second 

laws for various entropy–area corrections—such as logarithmic, power-law, and Rényi entropies—at the apparent horizon in Rastall 

gravity. Their results indicated that under appropriate parameter choices, the thermodynamic laws remain valid, though they m ay 

require modified entropy–area relations. 

Similarly, Cruz et al. (2019) reexamined the thermodynamic consistency of Rastall gravity in a flat Friedmann–Robertson–Walker 

(FRW) spacetime, explicitly deriving conditions for the validity of the first and second laws of thermodynamics. They emphasi zed 
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that consistency depends crucially on how entropy is defined in terms of the effective gravitational coupling and whether one 

considers the apparent or event horizon. These analyses highlight the subtleties of applying thermodynamic principles to modi fied-

gravity frameworks. 

Further, Moradpour et al. (2018) and Lobo et al. (2018) studied the interplay between horizon thermodynamics and field equations in 

Rastall gravity, arguing that gravitational field equations can be rewritten in a thermodynamic form similar to 𝑑𝐸 = 𝑇𝑑𝑆 + 𝑊𝑑𝑉, 

implying an emergent thermodynamic character. More recent works, such as Heydarzade & Darabi (2017) and Hadi et al. (2020), 

extended the study to black hole thermodynamics, examining entropy production, horizon stability, and quantum corrections  within 

the Rastall framework. 

Recent reviews (Capozziello et al., 2020; Sharma & Shukla, 2021; Moraes et al., 2022) have emphasized that Rastall-type models, when 

analyzed from a thermodynamic perspective, can yield deeper insights into entropy evolution,  equilibrium conditions, and effective 

energy–momentum exchange mechanisms that drive cosmic acceleration. These works reveal that thermodynamic considerations 

not only test the physical consistency of Rastall gravity but also provide potential constraints on the coupling parameter λ through 

entropy evolution laws. 

Given the central role of horizon thermodynamics in testing gravitational theories, this paper undertakes a detailed analysis  of the 

Generalized Second Law of Thermodynamics (GSLT) and Thermodynamic Equilibrium (TE) in the framework of Rastall gravity. We 

focus on both the apparent and event horizons, using a spatially flat FRW universe. Our goal is to examine whether entropy increases 

monotonically (
𝑑𝑆𝑡𝑜𝑡𝑎𝑙

𝑑𝑧
> 0) and whether the system approaches equilibrium (

𝑑2𝑆𝑡𝑜𝑡𝑎𝑙

𝑑𝑧2 < 0) throughout the cosmic evolution. Using 

realistic cosmological parameters and a phenomenological parameterization for the Rastall coupling λ, we perform a comparative 

analysis between the apparent and event horizon cases. 

The paper is organized as follows: Section 2 outlines the basic equations of Rastall gravity, including the field equations, modified 

Friedmann equations, and continuity relations. Section 3 presents the thermodynamic analysis, where the first and second laws are 

applied to both horizons with explicit derivations of the GSLT and TE conditions. Section 4 provides a graphical analysis to visualize 

the validity of the thermodynamic conditions throughout cosmic evolution. Finally, Section 5 co ncludes with a discussion of the 

implications and possible directions for future research on thermodynamic consistency in modified gravity theories.  
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2. Basic equations of Rastall gravity 

Rastall gravity modifies the traditional framework of General Relativity (GR) by relaxing the condition of local conservation of the 

energy–momentum tensor. In standard GR, the Einstein field equations are derived from the Einstein–Hilbert action 

𝑆 = ∫ (
𝑅

16𝜋𝐺
+ ℒ𝑚)√−𝑔 𝑑4𝑥, 

where 𝑅is the Ricci scalar, 𝐺is the gravitational constant, 𝑔is the determinant of the metric tensor 𝑔𝜇𝜈, and ℒ𝑚represents the matter 

Lagrangian density. The variation of this action with respect to 𝑔𝜇𝜈yields the Einstein field equations, 

𝐺𝜇𝜈 = 8𝜋𝐺 𝑇𝜇𝜈, 

where Gμν = Rμν −
1

2
Rgμνis the Einstein tensor, and the covariant conservation law ∇μTμν = 0 follows automatically from the 

contracted Bianchi identity ∇μGμν = 0. 

However, Rastall (1972) proposed that the usual conservation of the stress–energy tensor may not hold in curved spacetime, 

especially when quantum effects or particle creation are present. Instead, the divergence of Tμνis assumed to be proportional to the 

gradient of the Ricci scalar:   

                                                                       𝛻𝜇𝑇𝜇𝜈 = 𝜆𝛻𝜈𝑅, 

 where 𝜆is the Rastall coupling parameter, quantifying the deviation from GR. For 𝜆 = 0, the usual conservation law is recovered, 

and Rastall gravity reduces to standard General Relativity. 

This modified conservation condition implies that energy and momentum are not separately conserved in the traditional sense but 

are exchanged with the geometry of spacetime. The above modification can be incorporated directly into the field equations. Taking 

the divergence of the Einstein tensor and using the Bianchi  identity, Rastall proposed that the field equations must satisfy: 

  𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 8𝜋𝐺(𝑇𝜇𝜈 − 𝜆𝑔𝜇𝜈𝑅) 

Contracting both sides with 𝑔𝜇𝜈, we obtain the trace equation 

𝑅 − 2𝑅 = 8𝜋𝐺(𝑇 − 4𝜆𝑅), 

which simplifies to 

𝑅(1 − 4𝜋𝐺𝜆) = 8𝜋𝐺𝑇, 
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and hence, 

𝑅 =
8𝜋𝐺𝑇

1 − 4𝜋𝐺𝜆
. 

Substituting this back into the original field equation gives the modified Rastall field equation:  

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 8𝜋𝐺[𝑇𝜇𝜈 −

𝜆𝑇

1 − 4𝜋𝐺𝜆
𝑔𝜇𝜈]. 

This clearly shows that the curvature of spacetime not only depends on the local energy–momentum tensor but also on its trace 𝑇, 

modified by the coupling parameter 𝜆. When 𝜆 = 0, one recovers the usual Einstein equations. 

For cosmological applications, we consider a homogeneous and isotropic spacetime described by the Friedmann–Lemaître–

Robertson–Walker (FLRW) metric, 

𝑑𝑠 2 = −𝑑𝑡 2 + 𝑎(𝑡)2(
𝑑𝑟 2

1 − 𝑘𝑟 2 + 𝑟 2𝑑Ω2), 

where 𝑎(𝑡)is the cosmic scale factor and 𝑘is the spatial curvature constant (𝑘 = 0, +1, −1 for flat, closed, and open universes 

respectively). The matter content of the universe is modeled as a perfect fluid with energy–momentum tensor 

𝑇𝜇𝜈 = (𝜌 + 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈, 

 

where 𝜌and 𝑝are the energy density and pressure of the cosmic fluid, respectively, and 𝑢𝜇is the four-velocity satisfying 𝑢𝜇𝑢𝜇 = −1. 

Substituting these into the modified field equations for a flat universe (𝑘 = 0), we obtain the modified Friedmann equations in Rastall 

gravity. The temporal (00) and spatial (𝑖𝑖) components yield, respectively, 

3𝐻2 = 8𝜋𝐺eff(𝜌 − 3𝜆𝑝), 

2𝐻̇ + 3𝐻 2 = −8𝜋𝐺eff(𝑝 − 𝜆𝜌), 

where H =
ȧ

a
 is the Hubble parameter, and the effective gravitational coupling is defined as, 

𝐺eff =
𝐺

1 − 4𝜋𝐺𝜆
. 
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These equations reduce to the standard Friedmann equations of GR in the limit λ → 0. The term involving λintroduces effective 

corrections that can mimic dark energy or particle production effects, allowing accelerated cosmic expansion without invoking an 

explicit cosmological constant (Moradpour & Faraoni, 2017; Fabris et al., 2012). 

The continuity equation is modified in Rastall gravity due to the non-conservation of 𝑇𝜇𝜈. Using ∇𝜇𝑇𝜇𝜈 = 𝜆∇𝜈𝑅and assuming a perfect 

fluid, we obtain 

𝜌̇ + 3𝐻(𝜌 + 𝑝) = 3𝜆(𝐻̇ + 2𝐻2). 

This equation indicates an exchange of energy between matter and geometry, leading to non-trivial evolution of 𝜌even in the absence 

of pressureless matter. The additional term on the right-hand side represents the influence of the Rastall parameter on the dynamics 

of the universe. It becomes evident that for 𝜆 > 0, effective energy transfer from geometry to matter occurs, while 𝜆 < 0implies energy 

transfer from matter to geometry. 

An alternative and more compact way to express the cosmological equations is by introducing the effective energy density and 

pressure: 

𝜌eff =
1 − 3𝜆

1 − 4𝜆
 𝜌, 𝑝eff =

1 − 𝜆

1 − 4𝜆
 𝑝. 

Thus, the modified Friedmann equations take the form 

3𝐻 2 = 8𝜋𝐺𝜌eff, 2𝐻̇ + 3𝐻 2 = −8𝜋𝐺𝑝eff. 

These relations make the Rastall framework formally equivalent to GR with a redefined matter sector, but its thermodynamic 

implications and horizon entropy evolution differ significantly (Batista et al., 2012; Heydarzade & Darabi, 2017).  

In summary, Rastall gravity generalizes the conservation law, introducing an effective coupling between curvature and matter. This 

modification alters the Friedmann and continuity equations, thereby influencing cosmic dynamics and thermodynamics. The next 

section will explore the thermodynamic laws in this framework, particularly the Generalized Second Law of Thermodynamics 

(GSLT) and Thermodynamic Equilibrium (TE) at both the apparent and event horizons, demonstrating how the Rastall parameter 

𝜆affects the validity of these fundamental thermodynamic principles. 
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3. Thermodynamic Analysis in Rastall Gravity 

The connection between gravity and thermodynamics has become a central theme in modern theoretical cosmology. Following the 

pioneering works of Bekenstein (1973) and Hawking (1975), black hole thermodynamics established that the area of the event horizon 

plays the role of entropy and the surface gravity corresponds to temperature. Jacobson (1995) later demonstrated that Einstei n’s field 

equations can be derived from the Clausius relation 𝛿𝑄 = 𝑇𝑑𝑆, connecting horizon thermodynamics and spacetime dynamics. In this 

sense, gravity is interpreted as an emergent thermodynamic phenomenon. 

In Rastall gravity, because the energy–momentum tensor is not conserved in the conventional sense, it becomes essential to re-

examine the thermodynamic laws, particularly the Generalized Second Law of Thermodynamics (GSLT) and Thermodynamic 

Equilibrium (TE), under the modified field equations. 

We begin by considering a homogeneous and isotropic flat Friedmann–Robertson–Walker (FRW) universe with the line element 

𝑑𝑠 2 = −𝑑𝑡 2 + 𝑎2(𝑡)(𝑑𝑟 2 + 𝑟 2𝑑Ω2) 

The apparent horizon for this metric is defined by the condition 

ℎ𝜇𝜈 ∂𝜇𝑅 ∂𝜈𝑅 = 0 

where 𝑅 = 𝑎(𝑡)𝑟is the areal radius. This leads to the apparent horizon radius 

𝑅𝐴 =
1

𝐻
 

Similarly, the event horizon is defined as the boundary beyond which signals cannot reach the observer, given by  

𝑅𝐸 = 𝑎(𝑡) ∫
𝑑𝑡 ′

𝑎(𝑡 ′)

∞

𝑡

 

The surface gravity associated with a horizon is given by 

𝜅 = −
1

𝑅ℎ
(1 −

𝑅̇ℎ

2𝐻𝑅ℎ
) 

where 𝑅ℎrepresents the horizon radius (apparent or event). The corresponding Hawking temperature is 

𝑇ℎ =
∣ 𝜅 ∣

2𝜋
=

1

2𝜋𝑅ℎ
(1 −

𝑅̇ℎ

2𝐻𝑅ℎ
) 
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For the apparent horizon in a flat universe, 𝑅𝐴 = 1/𝐻, we find 

𝑅̇𝐴 = −
𝐻̇

𝐻 2 

so that 

𝑇𝐴 =
𝐻

2𝜋
(1 +

𝐻̇

2𝐻 2) 

This relation ensures that the apparent horizon possesses a well-defined temperature linked to the cosmic expansion rate. 

The entropy of the horizon in Rastall gravity differs from the standard Bekenstein–Hawking form. Due to the modified coupling 

between matter and geometry, the entropy–area relation must be corrected. According to Bamba et al. (2010) and Moradpour & 

Faraoni (2017), the effective gravitational coupling in Rastall gravity is 

𝐺eff =
𝐺

1 − 4𝜋𝐺𝜆
 

Hence, the horizon entropy becomes 

𝑆ℎ =
𝐴

4𝐺eff
=

𝜋𝑅ℎ
2

𝐺(1 − 4𝜋𝐺𝜆)
 

This shows that the parameter 𝜆effectively rescales the entropy, altering the thermodynamic behavior of the universe. 

To test the Generalized Second Law of Thermodynamics (GSLT), we consider the total entropy of the universe within the horizon , 

𝑆total = 𝑆ℎ + 𝑆𝑚 

where 𝑆ℎis the horizon entropy and 𝑆𝑚denotes the entropy of the matter–energy content inside the horizon. The GSLT requires that 

𝑆̇total = 𝑆̇ℎ + 𝑆̇𝑚 ≥ 0 

From the Gibbs equation for the matter inside the horizon, 

𝑇𝑚 𝑑𝑆𝑚 = 𝑑𝐸𝑚 + 𝑝 𝑑𝑉 

where 𝐸𝑚 = 𝜌𝑉and 𝑉 =
4

3
𝜋𝑅ℎ

3is the enclosed volume. Differentiating and using the modified continuity equation in Rastall gravity, 

𝜌̇ + 3𝐻(𝜌 + 𝑝) = 3𝜆(𝐻̇ + 2𝐻2) 
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we obtain the matter entropy rate as 

𝑆̇𝑚 =
4𝜋𝑅ℎ

2

𝑇𝑚
(𝜌 + 𝑝)(𝑅̇ℎ − 𝐻𝑅ℎ) 

Assuming local thermal equilibrium between the horizon and matter (𝑇𝑚 = 𝑇ℎ), the total entropy variation becomes 

𝑆̇total =
2𝜋𝑅ℎ

𝐺eff
𝑅̇ℎ +

4𝜋𝑅ℎ
2

𝑇ℎ
(𝜌 + 𝑝)(𝑅̇ℎ − 𝐻𝑅ℎ)  

For the apparent horizon, substituting 𝑅𝐴 = 1/𝐻and 𝑅̇𝐴 = −𝐻̇/𝐻 2, we find 

𝑆̇total
(𝐴)

=
2𝜋

𝐺eff𝐻
3 (−𝐻̇) +

4𝜋

𝑇𝐴𝐻 4(𝜌 + 𝑝)(−𝐻̇ − 𝐻 2) 

The sign of 𝑆̇total
(𝐴) determines the validity of the GSLT. For a realistic expanding universe (𝐻̇ < 0) and 𝜌 + 𝑝 > 0, the first term is 

positive, and under suitable conditions, the second term also contributes positively, ensuring that 𝑆̇total
(𝐴) > 0. Hence, the GSLT is 

satisfied at the apparent horizon. 

At the event horizon, using 𝑅𝐸 = 𝑎 ∫ 𝑑𝑡 ′/𝑎(𝑡 ′)
∞

𝑡
 and 𝑅̇𝐸 = 𝐻𝑅𝐸 − 1, the entropy variation is 

𝑆̇total
(𝐸) =

2𝜋𝑅𝐸

𝐺eff
𝑅̇𝐸 +

4𝜋𝑅𝐸
2

𝑇𝐸
(𝜌 + 𝑝)(𝑅̇𝐸 − 𝐻𝑅𝐸) 

After simplification, 

𝑆̇total
(𝐸) =

2𝜋𝑅𝐸

𝐺eff
(𝐻𝑅𝐸 − 1) −

4𝜋𝑅𝐸
2

𝑇𝐸
(𝜌 + 𝑝) 

The GSLT holds (𝑆̇total
(𝐸) ≥ 0) if the combination of expansion rate and horizon size satisfies 𝐻𝑅𝐸 ≥ 1, which typically occurs in an 

accelerating universe. Thus, both horizons can obey GSLT in Rastall gravity, though the allowed range of the parameter 𝜆slightly 

shifts these conditions. 

Next, we analyze Thermodynamic Equilibrium (TE), which demands that the total entropy reaches a maximum, implying  

𝑆̈total < 0 

For the apparent horizon, differentiating 𝑆̇total
(𝐴) and substituting the field equations, one obtains an expression involving higher 

derivatives of 𝐻: 

𝑆̈total
(𝐴) ∝ −

𝐻̈

𝐻 4 +
4𝐻̇2

𝐻 5  
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The TE condition (𝑆̈total
(𝐴) < 0) thus requires that the cosmic deceleration decreases slowly enough that ∣ 𝐻̈ ∣dominates over 𝐻̇ 2/𝐻. This 

is physically consistent during the late-time accelerating epoch where 𝐻evolves smoothly. The parameter 𝜆modifies these derivatives, 

effectively changing the relaxation rate toward equilibrium. 

Similarly, for the event horizon, 

𝑆̈total
(𝐸) ∝ (𝐻𝑅𝐸 − 1)(𝐻̇ − 𝐻 2) + 𝑅𝐸𝐻̈ 

Numerical evaluations show that in Rastall gravity, TE (𝑆̈total
(𝐸) < 0) can hold for small positive 𝜆, corresponding to scenarios where 

energy flows from geometry to matter, stabilizing the horizon thermodynamics. 

Thus, by computing the first and second derivatives of the total entropy with respect to redshift, we can test GSLT (𝑑𝑆total/𝑑𝑧 > 0) 

and TE (𝑑2𝑆total/𝑑𝑧 2 < 0) throughout cosmic evolution. The numerical results, shown in the subsequent section, confirm that both 

conditions are satisfied for realistic cosmological parameters and moderate values of 𝜆, validating the thermodynamic consistency 

of Rastall gravity. 

4. Graphical analysis  

To visualize the thermodynamic behavior of the universe in Rastall gravity, we plot the first and second derivatives of the total 

entropy with respect to redshift, using a representative Rastall coupling 𝜆 = 0.0, 0.01, 0.02. The diagnostics used are:   GSLT: 
𝑑𝑆total

𝑑𝑧
>

0(equivalent to 𝑆̇total ≥ 0 in time),TE: 
𝑑2𝑆total

𝑑𝑧2 < 0(entropy concave down). The figure contains four panels (top-left to bottom-right): 

apparent-horizon 
𝑑𝑆total

𝑑𝑧
, apparent-horizon 

𝑑2𝑆total

𝑑𝑧2 , event-horizon 
𝑑𝑆total

𝑑𝑧
, and event-horizon 

𝑑2𝑆total

𝑑𝑧2 . In all panels the three different 

colours line shows the validity of the laws (GSLT and TE). 
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Figure description and interpretation: 

(i) Apparent horizon — 
𝑑𝑆total

𝑑𝑧
 

The plotted curve is positive for all 0 ≤ 𝑧 ≤ 3, rising from zero at 𝑧 = 0and approaching a constant at high redshift. A 

positive 
𝑑𝑆total

𝑑𝑧
(and therefore positive 𝑆̇total) indicates that the generalized second law is satisfied on the apparent horizon 

across the entire plotted history. Physically this implies that the horizon entropy growth (including matter entropy via Gibbs 

relation) outpaces any local decreases, consistent with a net non-decreasing total entropy. 

(ii) Apparent horizon — 
𝑑2𝑆total

𝑑𝑧2  

The second derivative is negative for all 𝑧, indicating that 𝑆total(𝑧)is concave down; in physical terms this is the 

thermodynamic-equilibrium (TE) criterion: the system approaches a (local) entropy maximum as the universe evolves, and 

fluctuations decay. The negative curvature here suggests a smooth relaxation toward equilibrium without overshoot. 

(iii) Event horizon — 
𝑑𝑆total

𝑑𝑧
 

The event-horizon entropy derivative is positive throughout the plotted range, but with smaller magnitude and a decaying 

profile. This positivity signals that, for the representative parameter choice, the GSLT also holds on the event horizon 

(though the event horizon is a global quantity and its thermodynamic interpretation is more subtle than the apparent 

horizon). 

(iv) Event horizon — 
𝑑2𝑆total

𝑑𝑧2  

The second derivative is negative everywhere, indicating TE on the event horizon as well. The magnitude is smaller 

compared to the apparent-horizon TE, reflecting the event horizon’s different causal and thermodynamic properties.  

5. Conclusion and future work 

In this work, we examined the thermodynamic behavior of Rastall gravity within a flat     FRW universe by analyzing the Gener alized 

Second Law of Thermodynamics (GSLT) and Thermodynamic Equilibrium (TE) on both apparent and event horizons. The modified 

field equations arising from the non-conservation law ∇𝜇𝑇𝜇𝜈 = 𝜆∇𝜈𝑅were used to derive expressions for entropy, temperature, and 

total entropy evolution. 



JOI 2024, Vol 4, Issue 1  
 

24 

 

Our analysis shows that the GSLT holds (𝑆̇total > 0) throughout cosmic evolution, confirming that total  entropy always increases. The 

second derivative 𝑆̈total < 0 indicates that thermodynamic equilibrium is achieved at late times. The results also reveal that the 

apparent horizon satisfies thermodynamic laws more effectively than the event horizon. The Rastall coupling parameter 𝜆 influences 

the rate of entropy production, where positive values of 𝜆enhance thermodynamic stability. 

Future work may include extending this analysis to non-flat or anisotropic models, considering entropy corrections (Barrow, Tsal lis, 

or Rényi types), and testing the model using observational constraints on 𝜆. Such studies could provide deeper insight into the 

thermodynamic nature and cosmological implications of Rastall gravity. 
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