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Abstract: Rhizobia, long recognized for symbiotic nitrogen fixation, have recently emerged as 

promising biocontrol agents against a broad spectrum of soil -borne plant pathogens. This concise 

review summarizes milestone advances demonstrating how rhizobia suppress fungal, oomycete 

and nematode diseases in both legume and non-legume crops. Disease suppression is mediated 

through direct mechanisms such as siderophore-mediated iron competition, antibiosis and 

secretion of cell wall-degrading enzymes, as well as indirect mechanisms involving induced 

systemic resistance and modulation of plant defense signaling pathways. Emphasis is placed on 

molecular interactions, phytoalexin induction and quorum sensing as central processes underlying 

rhizobial biocontrol. Key challenges and future research priorities for integrating rhizobia into 

sustainable plant disease management strategies are highlighted. 
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1. Introduction  

The increasing demand for sustainable and environmentally benign alternatives to chemical 

pesticides has intensified interest in microbial-based plant disease management strategies. Among 

plant growth-promoting rhizobacteria (PGPR), rhizobia are distinctive due to their well -established 

symbiotic association with legumes and their emerging role in plant disease suppression. Beyond 

biological nitrogen fixation, rhizobia contribute to plant health by modulating rhizosphere 

microbial communities, enhancing nutrient acquisition and activating host defence responses 

(Bhattacharyya & Jha, 2012; Lugtenberg & Kamilova, 2009). 
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Recent bibliometric and experimental studies highlight a sharp rise in research focusing on PGPR-mediated biocontrol, including 

rhizobia, as eco-friendly alternatives to synthetic fungicides (Espinosa-Palomeque et al., 2025). Advances in molecular ecology and 

plant–microbe interaction studies have further expanded the functional scope of rhizobia, positioning them as multifunctional agents 

capable of promoting growth while simultaneously limiting pathogen establishment in both legume and non-legume crops (Rasool 

et al., 2025). 

2. Direct biocontrol mechanisms   

Rhizobia directly suppress phytopathogens through the synthesis and release of bioactive metabolites that restrict pathogen 

growth and survival in the rhizosphere. 

2.1. Siderophore-mediated iron competition 

Iron is a critical micronutrient that strongly influences microbial competition in soil ecosystems. Many rhizobial strains produce high-affinity 

siderophores that efficiently chelate ferric iron, thereby reducing its availability to competing phytopathogens. (Neilands, 1995). This iron deprivation 

limits pathogen proliferation and contributes to disease suppression, particularly under iron-limiting soil conditions. Recent studies confirm that 

rhizobial and PGPR-derived siderophores play a pivotal role in suppressing soil-borne fungal pathogens under iron-limiting conditions, contributing 

significantly to disease reduction in crop plants (Venkataramana & Ndakidemi, 2024).  

2.2. Antibiosis and enzymatic degradation 

Several rhizobial isolates produce antimicrobial compounds, including bacteriocins and peptide-based antibiotics, that directly inhibit pathogen 

growth. In addition, the secretion of hydrolytic enzymes such as chitinases and β-1,3-glucanases disrupts pathogen cell wall integrity, leading to 

reduced virulence or pathogen death. These mechanisms collectively enhance rhizobial antagonistic potential in the rhizosphere. Experimental 

evidence from recent rhizobial–pathogen interaction studies further support the role of antibiosis and enzymatic degradation in suppressing root rot 

and wilt pathogens in leguminous crops (Balti et al., 2025). 

3. Indirect biocontrol via induced resistance 

In addition to direct antagonism, rhizobia induce systemic resistance in host plants, resulting in enhanced tolerance to a broad spectrum of 

pathogens. This induced resistance is commonly associated with elevated synthesis of phytoalexins, pathogenesis-related proteins and defence-

related enzymes (Hammerschmidt, 1999; Heil & Bostock, 2002). The process is predominantly mediated through jasmonic acid and ethylene 

signalling pathways, enabling plants to mount faster and stronger defence responses upon pathogen challenge (Kloepper et al.,  2004). 

Recent experimental evidence demonstrates that PGPR-mediated ISR significantly reduces disease severity in economically important crops such as 

tomato and chickpea by priming host defence pathways rather than exerting direct toxicity on pathogens (Mazuecos -Aguilera et al., 2025; Balti et 

al., 2025). Moreover, interactions between introduced rhizobia and resident soil microbial communities have been shown to modulate the 
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magnitude and consistency of ISR responses, emphasizing the ecological complexity of rhizobia -mediated disease suppression under field 

conditions (Rasool et al., 2025). 

4. Conclusion and future perspectives 

Rhizobia employ multifaceted biocontrol mechanisms integrating direct antagonism (siderophores, antibiotics, enzymes) with host defense 

modulation (ISR, SAR). Recent research highlights the expanding role of PGPR in sustainable agriculture through enhanced plant resilience, stress 

tolerance, and reduced reliance on chemical inputs. Continued research into rhizobial signaling and host responses will further unlock their biocontrol 

potential in diverse agroecosystems (bibliometric trends show strong growth in this field) 

Field-based studies demonstrate that rhizobial inoculation can significantly reduce disease severity while simultaneously improving plant growth 

and yield (Ganesan et al., 2007; Hahn et al., 2016). Recent multi-location evaluations confirm that Rhizobium and Bradyrhizobium species exhibit 

promising biocontrol potential against root rot and wilt pathogens, particularly when integrated with sustainable agronomic p ractices 

(Venkataramana & Ndakidemi, 2024). 

Future research should prioritize elucidation of molecular signalling networks governing rhizobia –plant–pathogen interactions, optimization of 

inoculant formulations and delivery systems, and assessment of rhizobial performance across diverse soil microbiomes (Espinosa-Palomeque et al., 

2025; Rasool et al., 2025). Integration of rhizobia with compatible microbial consortia represents a promising strategy to enhance reliability, scalability 

and resilience of biological disease management under changing climatic and edaphic condition 
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