

Short Communication

Tracking milestone advances in exploiting Rhizobia in biocontrol of plant diseases

Konineeka Sen *¹

¹Department of Botany, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, India

*Corresponding author email: konineekasen@pinglcollege.ac.in

Citation: Sen, K.; (2024). Tracking milestone advances in exploiting Rhizobia in biocontrol of plant diseases. *Journal of Intellectuals*, 4(1), 64–68. Retrieved from <https://journals.bahonacollege.edu.in/index.php/joi/article/view/joi2024-4-1-9>

Received: 28 September, 2024

Revised: 19 November, 2024

Accepted: 17 December, 2024

Published: 25 December, 2024

Publisher's Note: JOI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

Abstract: Rhizobia, long recognized for symbiotic nitrogen fixation, have recently emerged as promising biocontrol agents against a broad spectrum of soil-borne plant pathogens. This concise review summarizes milestone advances demonstrating how rhizobia suppress fungal, oomycete and nematode diseases in both legume and non-legume crops. Disease suppression is mediated through direct mechanisms such as siderophore-mediated iron competition, antibiosis and secretion of cell wall-degrading enzymes, as well as indirect mechanisms involving induced systemic resistance and modulation of plant defense signaling pathways. Emphasis is placed on molecular interactions, phytoalexin induction and quorum sensing as central processes underlying rhizobial biocontrol. Key challenges and future research priorities for integrating rhizobia into sustainable plant disease management strategies are highlighted.

Keywords: Rhizobium; biocontrol, induced systemic resistance, siderophores, antibiosis, phytoalexins

1. Introduction

The increasing demand for sustainable and environmentally benign alternatives to chemical pesticides has intensified interest in microbial-based plant disease management strategies. Among plant growth-promoting rhizobacteria (PGPR), rhizobia are distinctive due to their well-established symbiotic association with legumes and their emerging role in plant disease suppression. Beyond biological nitrogen fixation, rhizobia contribute to plant health by modulating rhizosphere microbial communities, enhancing nutrient acquisition and activating host defence responses (Bhattacharyya & Jha, 2012; Lugtenberg & Kamilova, 2009).

Recent bibliometric and experimental studies highlight a sharp rise in research focusing on PGPR-mediated biocontrol, including rhizobia, as eco-friendly alternatives to synthetic fungicides (Espinosa-Palomeque et al., 2025). Advances in molecular ecology and plant–microbe interaction studies have further expanded the functional scope of rhizobia, positioning them as multifunctional agents capable of promoting growth while simultaneously limiting pathogen establishment in both legume and non-legume crops (Rasool et al., 2025).

2. Direct biocontrol mechanisms

Rhizobia directly suppress phytopathogens through the synthesis and release of bioactive metabolites that restrict pathogen growth and survival in the rhizosphere.

2.1. Siderophore-mediated iron competition

Iron is a critical micronutrient that strongly influences microbial competition in soil ecosystems. Many rhizobial strains produce high-affinity siderophores that efficiently chelate ferric iron, thereby reducing its availability to competing phytopathogens. (Neilands, 1995). This iron deprivation limits pathogen proliferation and contributes to disease suppression, particularly under iron-limiting soil conditions. Recent studies confirm that rhizobial and PGPR-derived siderophores play a pivotal role in suppressing soil-borne fungal pathogens under iron-limiting conditions, contributing significantly to disease reduction in crop plants (Venkataramana & Ndakidemi, 2024).

2.2. Antibiosis and enzymatic degradation

Several rhizobial isolates produce antimicrobial compounds, including bacteriocins and peptide-based antibiotics, that directly inhibit pathogen growth. In addition, the secretion of hydrolytic enzymes such as chitinases and β -1,3-glucanases disrupts pathogen cell wall integrity, leading to reduced virulence or pathogen death. These mechanisms collectively enhance rhizobial antagonistic potential in the rhizosphere. Experimental evidence from recent rhizobial–pathogen interaction studies further support the role of antibiosis and enzymatic degradation in suppressing root rot and wilt pathogens in leguminous crops (Balti et al., 2025).

3. Indirect biocontrol via induced resistance

In addition to direct antagonism, rhizobia induce systemic resistance in host plants, resulting in enhanced tolerance to a broad spectrum of pathogens. This induced resistance is commonly associated with elevated synthesis of phytoalexins, pathogenesis-related proteins and defence-related enzymes (Hammerschmidt, 1999; Heil & Bostock, 2002). The process is predominantly mediated through jasmonic acid and ethylene signalling pathways, enabling plants to mount faster and stronger defence responses upon pathogen challenge (Kloepfer et al., 2004).

Recent experimental evidence demonstrates that PGPR-mediated ISR significantly reduces disease severity in economically important crops such as tomato and chickpea by priming host defence pathways rather than exerting direct toxicity on pathogens (Mazuecos-Aguilera et al., 2025; Balti et al., 2025). Moreover, interactions between introduced rhizobia and resident soil microbial communities have been shown to modulate the

magnitude and consistency of ISR responses, emphasizing the ecological complexity of rhizobia-mediated disease suppression under field conditions (Rasool et al., 2025).

4. Conclusion and future perspectives

Rhizobia employ multifaceted biocontrol mechanisms integrating direct antagonism (siderophores, antibiotics, enzymes) with host defense modulation (ISR, SAR). Recent research highlights the expanding role of PGPR in sustainable agriculture through enhanced plant resilience, stress tolerance, and reduced reliance on chemical inputs. Continued research into rhizobial signaling and host responses will further unlock their biocontrol potential in diverse agroecosystems (bibliometric trends show strong growth in this field)

Field-based studies demonstrate that rhizobial inoculation can significantly reduce disease severity while simultaneously improving plant growth and yield (Ganesan et al., 2007; Hahn et al., 2016). Recent multi-location evaluations confirm that *Rhizobium* and *Bradyrhizobium* species exhibit promising biocontrol potential against root rot and wilt pathogens, particularly when integrated with sustainable agronomic practices (Venkataramana & Ndakidemi, 2024).

Future research should prioritize elucidation of molecular signalling networks governing rhizobia-plant-pathogen interactions, optimization of inoculant formulations and delivery systems, and assessment of rhizobial performance across diverse soil microbiomes (Espinosa-Palomeque et al., 2025; Rasool et al., 2025). Integration of rhizobia with compatible microbial consortia represents a promising strategy to enhance reliability, scalability and resilience of biological disease management under changing climatic and edaphic conditions

Acknowledgements

The authors acknowledge DST-PURSE for financial support facilitating research on rhizobia-mediated biocontrol

References

1. Afzal, A. & Bano, A. (2008). Rhizobium and phosphate-solubilising bacteria improve yield and phosphorus uptake in wheat (*Triticum aestivum* L.). *International Journal of Agriculture and Biology*, 10, 85–88.
2. Ahemad, M. & Khan, M.S. (2009a). Effect of insecticide-tolerant and plant growth-promoting *Mesorhizobium* on performance of chickpea grown in insecticide-stressed alluvial soils. *Journal of Crop Science and Biotechnology*, 12, 217–226.
3. Ahemad, M. & Khan, M.S. (2009b). Effect of pesticide on plant growth-promoting traits of *Mesorhizobium* strain MRC4. *Journal of the Saudi Society of Agricultural Sciences*, 11, 63–71.
4. Balti, S., Mabrouk, Y., Souihi, M., Hemissi, I., Amri, I., Humm, E., Khan, N. & Hirsch, A.M. (2025). Combined inoculation of rhizobacteria with *Mesorhizobium* promotes growth, nutrient contents, and protects chickpea against *Fusarium redolens*. *AIMS Microbiology*, 11(2), 318–337. <https://doi.org/10.3934/microbiol.2025015> AIMS Press
5. Beauregard, P.B., Chai, Y., Vlamakis, H., Losick, R. & Kolter, R. (2013). *Bacillus subtilis* biofilm induction by plant polysaccharides. *Proceedings of the National Academy of Sciences USA*, 110, E1621–E1630.

6. Beltra, R., Del-Solar, G., Sánchez-Serrano, J.J. & Alonso, E. (1988). Mutants of *Rhizobium phaseoli* HM Mel (2) obtained by elevated temperatures. *Zentralblatt für Mikrobiologie*, 143, 529–532.
7. Bhattacharyya, P.N. & Jha, D.K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. *World Journal of Microbiology and Biotechnology*, 28, 1327–1350.
8. Boiero, L., Perrig, D., Masciarelli, O., Penna, C., Cassán, F. & Luna, V. (2007). Phytohormone production by three strains of *Bradyrhizobium japonicum* and possible physiological and technological implications. *Applied Microbiology and Biotechnology*, 74, 874–880.
9. Breil, B.T., Borneman, J. & Triplett, E.W. (1996). A newly discovered gene, *tfuA*, involved in production of the ribosomally synthesized peptide antibiotic trifolitoxin. *Journal of Bacteriology*, 178, 41–50.
10. Brockwell, J., Evans, C.M., Bowman, A.M. & McInnes, A. (2010). Distribution frequency and symbiotic properties of the Australian native legume *Trigonella suavissima* and its associated root nodule bacteria. *Rangeland Journal*, 32, 395–406.
11. Burton, J.C., Allen, O.N. & Berger, K.C. (1954). Response of bean (*Phaseolus vulgaris* L.) to inoculation with mixtures of effective and ineffective rhizobia. *Proceedings of the Soil Science Society of America*, 18, 156–159.
12. Choudhary, D.K., Prakash, A. & Johri, B.N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. *Indian Journal of Microbiology*, 47, 289–297.
13. Daniels, R., De Vos, D.E., Desair, J., Raedschelders, E., Luyten, E., Rosemeyer, C., Schoeters, E., Vanderleyden, J. & Michiels, J. (2002). The quorum-sensing locus of *Rhizobium etli* CNPAF512 affects growth and symbiotic nitrogen fixation. *Journal of Biological Chemistry*, 277, 462–468.
14. Dean, J.M., Mescher, M.C. & Moraes, C.M.D. (2014). Plant dependence on rhizobia for nitrogen influences induced plant defences and herbivore performance. *International Journal of Molecular Sciences*, 15, 1466–1480.
15. Deshwal, V.K., Dubey, R.C. & Maheshwari, D.K. (2003). Isolation of plant growth-promoting strains of *Bradyrhizobium* with biocontrol potential against *Macrophomina phaseolina*. *Current Science*, 84, 443–448.
16. Espinosa-Palomeque, B., Jiménez-Pérez, O., Ramírez-Gottfried, R.I., Preciado-Rangel, P., Buendía-García, A., Zapata Sifuentes, G., Sariñana-Navarrete, M.A. & Rivas-García, T. (2025). Biocontrol of phytopathogens using plant growth-promoting rhizobacteria: bibliometric analysis and systematic review. *Horticulturae*, 11(3), 271. <https://doi.org/10.3390/horticulturae11030271> MDPI
17. Ganesan, S., Kuppusamy, R.G. & Sekar, R. (2007). Integrated management of stem rot disease of groundnut using *Rhizobium* and *Trichoderma harzianum*. *Turkish Journal of Agriculture and Forestry*, 31, 103–108.
18. Glick, B.R. (1995). The enhancement of plant growth by free-living bacteria. *Canadian Journal of Microbiology*, 41, 109–117.
19. Glick, B.R. (2012). Plant growth-promoting bacteria: mechanisms and applications. *Scientifica*, 2012, 1–15.
20. Gross, D.C. & Vidaver, A.K. (1978). Bacteriocin-like substances produced by *Rhizobium japonicum*. *Applied and Environmental Microbiology*, 36, 936–943.
21. Hammerschmidt, R. (1999). Phytoalexins: what have we learned after 60 years? *Annual Review of Phytopathology*, 37, 285–306.
22. Heil, M. & Bostock, R.M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. *Annals of Botany*, 89, 503–512.

23. Kloepfer, J.W., Ryu, C.M. & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by *Bacillus* spp. *Phytopathology*, 94, 1259–1266.
24. Lugtenberg, B. & Kamilova, F. (2009). Plant growth-promoting rhizobacteria. *Annual Review of Microbiology*, 63, 541–556.
25. Mazuecos-Aguilera, I., Anta-Fernández, F., Crespo-Barreiro, A., Martínez-Quesada, A., Lombana-Larrea, L. & González-Andrés, F. (2025). Plant growth-promoting rhizobacteria enhanced induced systemic resistance of tomato against *Botrytis cinerea*. *Frontiers in Plant Science*, 16, 1570986. <https://doi.org/10.3389/fpls.2025.1570986> Frontiers
26. Mishra, R.P.N., Singh, R.K., Jaiswal, H.K., Kumar, V. & Maurya, S. (2006). Rhizobium-mediated induction of phenolics and plant growth promotion in rice. *Current Microbiology*, 52, 383–389.
27. Neilands, J.B. (1995). Siderophores: structure and function of microbial iron transport compounds. *Journal of Biological Chemistry*, 270, 26723–26726.
28. Nievas, F., Bogino, P., Sorroche, F. & Giordano, W. (2012). Detection and biological effect of quorum-sensing molecules in peanut-nodulating bradyrhizobia. *Sensors*, 12, 2851–2873.
29. Parniske, M., Ahlborn, B. & Werner, D. (1991). Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. *Journal of Bacteriology*, 173, 3432–3439.
30. Rasool, S., Groos, M., Hannula, S.E., et al. (2025). Bioinoculant-induced plant resistance is modulated by interactions with resident soil microbes. *Environmental Microbiome*, 20, 7. <https://doi.org/10.1186/s40793-025-00667-9> SpringerLink
31. Venkataramana, P.B. & Ndakidemi, P.A. (2024). Evaluating Rhizobium and Bradyrhizobium species as potential biocontrol agents for root rot fungi in soybean seedlings. *Technology in Agronomy*, 4, e010. <https://doi.org/10.48130/tia-0024-0007> Maximum Academic Press